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In the supplementary file, we provide more implementa-
tion details and more results not elaborated in our paper due
to the paper length limit:
• Sec. S1: more ablation results including the number of

control points, the effect of control points, and the impact
of ARAP loss.

• Sec. S2: qualitative results demonstrated in videos.
• Sec. S3: rendering speed analysis.
• Sec. S4: more implementation details.

S1. More Ablation Results
S1.1. Ablation on Initial Number of Control Points

We examine the influence of the initial number of control
points on D-NeRF [5] datasets, considering both its effect
on the final number of control points and its impact on per-
formance. The results for varying initial control point quan-
tities are reported in Table S1.

Table S1. We conducted an ablation analysis on the initial num-
ber of control points on D-NeRF [5] datasets. Evaluation metrics
include average PSNR, SSIM, and LPIPS values. The second line
shows the average final count of control points after training.

Initial 64 128 256 512 1024 2048 4096
Final 67 132 264 519 1018 1973 2083

PSNR(↑) 42.65 42.87 43.17 43.31 43.51 42.63 39.88
SSIM(↑) .9967 .9968 .9969 .9971 .9969 .9961 .9953
LPIPS(↓) .0073 .0067 .0061 .0063 .0064 .0079 .0090

Typically, the final number of control points varies from
the initial number and tends to converge to a more appro-
priate quantity for representing motion through the adap-
tive densifying and pruning strategy. As demonstrated in
the second row of Table S1, when the number of initial con-
trol points is too large (4096), exceeding the requirements
for representing the motion space, redundant points will be
pruned (2083). Moreover, increasing the number of control
points does not necessarily lead to better performance due
to optimization challenges. In contrast to using an exces-
sive number of control points, the model performance is less
sensitive to a smaller number of initial control points, with

relatively stable performance observed for both 64 and 128
control points. Consequently, they will not grow signifi-
cantly. This further validates our sparse motion assumption,
which posits that motion can be represented by a small num-
ber of control points. Upon evaluating various control point
configurations, we discovered that the best PSNR, SSIM,
and LPIPS values were achieved with 1024, 512, and 256
control points, respectively. However, the overall perfor-
mance was best with 512 control points.

S1.2. Ablation on Control Points and ARPR Loss

In the video from 03:32 – 04:19, we show the qualitative
results to demonstrate the effects of control points and the
ARPR loss for motion reconstruction and dynamic view
synthesis.

Effects of control points: The reconstructed motion trajec-
tories of Gaussians obtained from our baseline method and
our formulation with control points are showcased in the
video clip 03:32 – 04:04, emphasizing the advantage of our
method in achieving more precise motion reconstruction. It
is noticeable that the reconstruction from the baseline ex-
hibits high-frequency, noisy shaking, whereas our approach
generates a more stable motion. This underscores the effec-
tiveness of our compact motion representation with control
points in reconstructing dynamic scenes, which promotes a
smoother and more accurate trajectory.

Effects of APRP loss: The ARAP loss, formulated in Eq.
(10) in the paper, constrains the local rigidity of control
point motion. As demonstrated in the video clip 04:04 -
04:19, without ARAP loss, some control points on the arm
move towards the torso as the arm falls down, resulting in
inconsistency with the actual motion and negatively affect-
ing the subsequent Gaussian rendering to some extent, as
shown in Table 3 in the paper. By incorporating ARAP loss
on control points, the local rigidity of motion can be ensured
which also improves the rendering qualities.
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S2. More Qualitative Results with Video
Demonstrations

We provide a video in the attached documents to show-
case the quality of our results. The dynamic scene re-
construction results can be seen in the video clip 00:10 –
01:37, where we compare our method with TiNeuVox [1]
and the concurrent work 4D GS [7] on the D-NeRF [5]
dataset. We also make comparisons with NeRF-DS [8]
and HyperNeRF [4] on the NeRF-DS [8] dataset and show-
case additional reconstruction results on the HyperNeRF [4]
dataset. Furthermore, the video clip 01:37 – 03:32 features
our motion editing interface, designed for efficient interac-
tions, and presents more results of reconstructed motion and
edited motion, including both D-NeRF [5] data and self-
captured data.

S3. Rendering Speed Analysis
Our method predicts transformations for a small number of
control points, which in turn drive the motion of 3D Gaus-
sians, leading to faster rendering speeds and a reduced net-
work query load compared to our baseline method. We
compare our rendering speed, measured in frames per sec-
ond (FPS), with the baseline approach, 4D Gaussians [7]
(4D-GS), and 3D Gaussians [2] (3D-GS) on the D-NeRF [5]
datasets using an NVIDIA RTX 3090 GPU, where the av-
erage number of Gaussians was 48.98K. As illustrated in
Table S2, our approach outperforms the baseline method,
which directly predicts per-Gaussian deformation by 2.6
times. It is worth noting that our sparse-controlled ap-
proach has a higher speed compared to 4D-GS [7], which
introduces multi-resolution hex-planes to store latent mo-
tion features of Gaussians and predicts Gaussian deforma-
tion with a small MLP to reduce the network query burden.
Our method is approximately twice as fast as 4D-GS. Addi-
tionally, our method’s rendering speed is comparable to that
of the original 3D Gaussians [2]. Our approach adapts 3D
Gaussians to dynamic scenes while maintaining its render-
ing quality and speed.

Table S2. Comparison of rendering speed on D-NeRF [5] datasets
measured in FPS, at a resolution of 800× 800 resolution.

Method 3D-GS [2] 4D-GS [7] Baseline Ours
Speed (FPS) ↑ 298.5 145.8 113.3 295.4

S4. Implementation Details
In this section, we introduce more details on model imple-
mentation and training.

Network To predict the 6 DoF transformations of control
points, we utilize an MLP Ψ (described in Section 4.1 of
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Figure S1. Our approach involves pre-training the sparse control
points and MLP to capture the rough motion of the scene, before
jointly training them with the Gaussians to refine the scene dynam-
ics and capture finer details.

the main paper) comprising 8 layers and a skip connection
at the 4th layer. The network takes as input the positional
embedding [3] of the control points’ time and canonical po-
sition, with respective frequencies of 6 and 10.

Pre-training We show the pre-training process in the first
row of Fig. S1. To capture the scene’s rough motion, we
pre-train the control points P = {(pi ∈ R3, oi ∈ R+)}, i ∈
{1, 2, · · · , Np} and the MLP Ψ. In this stage, we initially
sample Np control points from the SfM point clouds or ran-
domly if unavailable. Subsequently, we render these control
points following Gaussian Splatting [2], treating them as
trainable Gaussians with time-varying transformations pre-
dicted by the MLP Ψ. To ensure uniform distribution and
prevent distortion, the Gaussians of all control points are
regularized with the same size oi, i.e., the sphere shape with
the same radius, which is further employed as the sphere-
shaped Gaussian kernel in the Radial Basis Function (RBF)
for calculating neighboring weights, as demonstrated in Eq.
(5) of the main paper.

The control points and MLP weights are pre-trained with
both the Lrender loss of control point Gaussians and Larap.
The former encompasses L1 loss and D-SSIM loss, while
the latter is defined in Eq. (10) of the main paper. During
optimization, we allow the control points to be densified
or pruned for 7500 iterations. Afterward, we sample Np

control points using farthest point sampling [6] and train
the Gaussians of control points and MLP for another 2500
iterations without further densification or pruning to main-
tain a fixed number of control points. For scenes with rel-
atively small motions (e.g., D-NeRF [5] and NeRF-DS [8]
datasets), we pre-train control points and the MLP on all
frames. For real-captured scenes where moving objects
have entirely different positions at different times, such as
the hand in the teaser image, we progressively pre-train the
control points and MLP, beginning with the first 20% of
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frames and adding the subsequent 20% to the training set
every 1000 steps.

Training With the pre-trained control points P and MLP Ψ,
our objective is to obtain well-trained Gaussians G that, in
conjunction with the former two, can accurately capture the
dynamic scene. Initially, we freeze the parameters of the
control points and MLP, focusing on optimizing the Gaus-
sians for the first 3000 iterations. This is because the Gaus-
sians are relatively new and unstable at the beginning. Sub-
sequently, we jointly train the Gaussians G, control points
P , and MLP Ψ with the loss and adaptive learning strat-
egy defined in Section 4.3 of the main paper. The training
process is illustrated in the second row of Fig. S1.

During the training process, the weight of the ARAP
loss, denoted as λarap, undergoes exponential decay from
1e-4 to 1e-7 over 10000 iterations. After 10000 iterations,
the ARAP loss is no longer applied, as the rigidity of the
control points has been effectively constrained. The follow-
ing training process is primarily dominated by the rendering
loss.

Analysis of training time While our training strategy in-
cludes a pre-training stage, the overall training speed is still
fast, as the pre-training stage typically takes around 3-4
minutes. The main training process takes approximately
25 minutes. Note that the KNN interpolation process of
Gaussian motion during train time differs from that dur-
ing inference time: the index and weight used in the KNN
search are not fixed and should be updated at each training
iteration, which slightly increases the training time. Never-
theless, our total training time (approximately 28 minutes)
remains comparable to the concurrent work 4D-GS [7] (ap-
proximately 20 minutes), and it does not increase the com-
putation too much compared to the original 3D Gaussian
(approximately 10 minutes) for static scenes.
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