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Figure 1. Given (a) an image sequence from a monocular dynamic video, we propose to represent the motion with a set of sparse control
points, which can be used to drive 3D Gaussians for high-fidelity rendering. Our approach enables both (b) dynamic view synthesis and
(c) motion editing due to the motion representation based on sparse control points.

Abstract
Novel view synthesis for dynamic scenes is still a chal-

lenging problem in computer vision and graphics. Recently,
Gaussian splatting has emerged as a robust technique to
represent static scenes and enable high-quality and real-
time novel view synthesis. Building upon this technique,
we propose a new representation that explicitly decomposes
the motion and appearance of dynamic scenes into sparse
control points and dense Gaussians, respectively. Our key
idea is to use sparse control points, significantly fewer in
number than the Gaussians, to learn compact 6 DoF trans-
formation bases, which can be locally interpolated through
learned interpolation weights to yield the motion field of
3D Gaussians. We employ a deformation MLP to pre-
dict time-varying 6 DoF transformations for each control
point, which reduces learning complexities, enhances learn-
ing abilities, and facilitates obtaining temporal and spatial
coherent motion patterns. Then, we jointly learn the 3D
Gaussians, the canonical space locations of control points,
and the deformation MLP to reconstruct the appearance,
geometry, and dynamics of 3D scenes. During learning,
the location and number of control points are adaptively
adjusted to accommodate varying motion complexities in
*Equal Contribution †Corresponding Author

different regions, and an ARAP loss following the princi-
ple of as rigid as possible is developed to enforce spatial
continuity and local rigidity of learned motions. Finally,
thanks to the explicit sparse motion representation and its
decomposition from appearance, our method can enable
user-controlled motion editing while retaining high-fidelity
appearances. Extensive experiments demonstrate that our
approach outperforms existing approaches on novel view
synthesis with a high rendering speed and enables novel
appearance-preserved motion editing applications.

1. Introduction
Novel view synthesis from a monocular video is a crucial
problem with many applications in virtual reality, gaming,
and the movie industry. However, extracting scene geome-
try and appearance from limited observations [23, 24, 41] is
challenging. Concurrently, real-world scenes often contain
dynamic objects, which pose additional challenges in rep-
resenting object movements accurately to reflect real-world
dynamics [14, 15, 26, 27, 30].

Recent advancements in this area are primarily driven by
neural radiance fields (NeRF) [1–3, 23, 41], which utilizes
an implicit function to simultaneously learn scene geome-
try and appearance from multi-view images. Various ap-
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proaches have been proposed to model dynamic objects by
predicting scene flows [6, 11, 15, 16, 26, 27, 30, 38, 43]
leveraging plane- or volume grid-based representations [4,
7, 20, 31, 33] and temporal interpolation [14, 28]. Despite
significant progress, NeRF-based representations still strug-
gle with low rendering qualities, speeds, and high memory
usage. This issue is particularly evident when rendering at
high resolutions [8, 24, 50], as they necessitate sampling
hundreds of query points along each ray to predict color
and opacity for rendering a single pixel.

Most recently, Gaussian splatting [12], which represents
a scene as 3D Gaussians, has shown remarkable perfor-
mance in terms of rendering quality, resolution, and speed.
Utilizing a point-based scene representation, this method
rasterizes 3D Gaussians to render images from specified
views. It enables fast model training and real-time in-
ference, achieving state-of-the-art (SOTA) visual quality.
However, its existing formulation only applies to static
scenes. It remains a challenge to incorporate object motion
into the Gaussian representation without compromising ren-
dering quality and speed. An intuitive method [47] involves
learning a flow vector for each 3D Gaussian. While this
method can yield high-quality rendering results, it incurs a
significant time cost for training and inference. Moreover,
modeling motion in such a high-dimensional space leads to
noisy trajectories and poor generalization in novel views, as
demonstrated in Fig. 6 (a).

Motivated by the observation that real-world motions
are often sparse, spatially continuous, and locally rigid,
we propose an approach to enrich Gaussian splatting with
learnable sparse control points (≈512) compared to the
number of Gaussians (≈100K), in a much more compact
space for modeling scene dynamics. These control points
are associated with time-varying 6 DoF transformations pa-
rameterized as rotation using quaternion and translation pa-
rameters, which can be locally interpolated through learned
interpolation weights to yield the motion field of dense
Gaussians. Instead of directly optimizing 6 DoF parame-
ters for each control point, we utilize an MLP conditioned
on time and location to predict them. This strategy re-
duces learning complexities, enhances model capabilities,
and provides motions with improved spatial and temporal
continuity and coherence. Then, we jointly learn the canon-
ical space 3D Gaussian parameters, locations, and radius
of sparse control points at canonical space and the MLP to
predict their time-varying transformations from a monocu-
lar video for dynamic novel view synthesis. During learn-
ing, we introduce an adaptive strategy to adaptively change
the number of sparse points to accommodate motion com-
plexities in different regions and employ an ARAP loss that
encourages the learned motions to be locally as rigid as pos-
sible.

Owing to the effective motion and appearance represen-

tations, our approach simultaneously enables high-quality
dynamic view synthesis and motion editing, as shown
in Fig. 1. We perform extensive experiments and abla-
tion studies on benchmark datasets, demonstrating that our
model surpasses existing methods both quantitatively and
qualitatively while maintaining high rendering speeds. Fur-
thermore, by learning a control graph from the scene mo-
tion, our control points-based motion representation allows
for convenient motion editing, a feature not present in ex-
isting methods [4, 7, 11, 30, 31]. More results for motion
editing are included in Fig. 5 and the supplementary mate-
rial. Our contributions can be summarized as follows:
• We introduce sparse control points together with an MLP

for modeling scene motion, based on the insight that mo-
tions within a scene can be represented by a compact sub-
space with a sparse set of bases.

• We employ adaptive learning strategies and design a reg-
ularization loss based on rigid constraints to enable effec-
tive learning of appearances, geometry, and motion from
a monocular video.

• Thanks to the sparse motion representation, our approach
enables motion editing by manipulating the learned con-
trol points while maintaining high-fidelity appearances.

• Extensive experiments show our approach achieves
SOTA performance quantitatively and qualitatively.

2. Related Work

Dynamic NeRF. Novel view synthesis has been a promi-
nent topic in the academic field for several years. NeRF [23]
models static scenes implicitly with MLPs, and many
works [11, 15, 26, 27, 30, 38, 43] have expanded its us-
age to dynamic scenes via a deformation field. Some meth-
ods [9, 14, 28] represent dynamic scenes as 4D radiance
fields but face extensive computational costs due to ray
point sampling and volume rendering. Several accelera-
tion approaches have been used for dynamic scene mod-
eling. DeVRF [20] introduces a grid representation, and
IBR-based methods [16–18, 45] use multi-camera informa-
tion for quality and efficiency. Other methods used prim-
itives [21], predicted MLP maps [29], or grid/plane-based
structures [4, 7, 31, 33, 39, 40] for speed and performance
in various dynamic scenes. However, hybrid models under
perform with high-rank dynamic scenes due to their low-
rank assumption.

Dynamic Gaussian Splatting. Gaussian Splatting [12]
offers improved rendering quality and speed for radiance
fields. Several concurrent works have adapted 3D Gaus-
sians for dynamic scenes. Luiten et al. [22] utilizes frame-
by-frame training, suitable for multi-view scenes. Yang et
al. [47] separate scenes into 3D Gaussians and a deforma-
tion field for monocular scenes but face slow training due to
an extra MLP for learning Gaussian offsets. Following [47],
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Wu et al. [42] replaced the MLP with multi-resolution hex-
planes [4] and a lightweight MLP. Yang et al. [48] include
time as an additional feature in 4D Gaussians but face qual-
ity issues compared to constraints in canonical space. Our
work proposes using sparse control points to drive the de-
formation of 3D Gaussians, which enhances rendering qual-
ity and reduces MLP query overhead. The learned control
point graph can also be used for motion editing.
3D Deformation and Editing. Traditional deformation
methods in computer graphics are typically based on Lapla-
cian coordinates [19, 34–36], Poisson equation [51] and
cage-based approaches [49, 54]. These methods primar-
ily focus on preserving the geometric details of 3D objects
during the deformation process. In recent years, there have
been other approaches [44, 52] that aim to edit the scene
geometry learned from 2D images. These methods priori-
tize the rendering quality of the edited scene. Our approach
falls into this category. However, instead of relying on
the implicit and computationally expensive NeRF-based ap-
proach, our method employs an explicit point-based control
graph deformation strategy and Gaussian rendering, which
is more intuitive and efficient.

3. Preliminaries
Gaussian splatting represents a 3D scene using colored 3D
Gaussians [12]. Each Gaussian G has a 3D center location
µ and a 3D covariance matrix Σ,

G(x) = e−
1
2 (x−µ)TΣ−1(x−µ). (1)

The covariance matrix Σ is decomposed as Σ = RSSTRT

for optimization, with R as a rotation matrix represented by
a quaternion q ∈ SO(3), and S as a scaling matrix repre-
sented by a 3D vector s. Each Gaussian has an opacity value
σ to adjust its influence in rendering and is associated with
sphere harmonic (SH) coefficients sh for view-dependent
appearance. A scene is parameterized as a set of Gaussians
G = {Gj : µj , qj , sj , σj , shj}.

Rendering an image involves projecting these Gaussians
onto the 2D image plane and aggregating them using fast
α-blending. The 2D covariance matrix and center are Σ′ =
JWΣWTJT and µ′ = JWµ. The color C(u) of a pixel u
is rendered using a neural point-based α-blending as,

C(u) =
∑
i∈N

TiαiSH(shi, vi), where Ti = Πi−1
j=1(1−αj). (2)

Here, SH is the spherical harmonic function and vi is the
view direction. αi is calculated by evaluating the corre-
sponding projected Gaussian Gi at pixel u as,

αi = σie
− 1

2 (p−µ′
i)

TΣ′
i(p−µ′

i), (3)

where µ′
i and Σ′

i are the center point and covariance matrix
of Gaussian Gi, respectively. By optimizing the Gaussian

parameters {Gj : µj , qj , sj , σj , cj} and adjusting Gaussian
density adaptively, high-quality images can be synthesized
in real-time. We further introduce sparse control points to
adapt Gaussian splatting for dynamic scenes while main-
taining rendering quality and speed.

4. Method
Our goal is to reconstruct a dynamic scene from a monoc-
ular video. We represent the geometry and appearance of
the dynamic scene using Gaussians in the canonical space
while modeling the motion through a set of control points
together with time-varying 6DoF transformations predicted
by an MLP. These learned control points and corresponding
transformations can be utilized to drive the deformation of
Gaussians across different timesteps. The number of control
points is significantly smaller than that of Gaussians, result-
ing in a set of compact motion bases for modeling scene dy-
namics and further facilitating motion editing. An overview
of our method is shown in Fig. 2. In the following, we first
present the sparse control points for representing compact
motion bases in Sec. 4.1, followed by the dynamic scene
rendering formulation in Sec. 4.2 and optimization process
in Sec. 4.3.

4.1. Sparse Control Points

To derive a compact motion representation, we introduce a
set of sparse control points P = {(pi ∈ R3, oi ∈ R+)}, i ∈
{1, 2, · · · , Np}. Here, pi denotes the learnable coordinate
of control point i in the canonical space. oi is the learn-
able radius parameter of a radial-basis-function (RBF) ker-
nel that controls how the impact of a control point on a
Gaussian will decrease as their distances increase. Np is
the total number of control points, which is considerably
fewer than that of Gaussians.

For each control point k, we learn time-varying 6 DoF
transformations [Rt

i|T t
i ] ∈ SE(3) , consisting of a local

frame rotation matrix Rt
i ∈ SO(3) and a translation vector

T t
i ∈ R3. Instead of directly optimizing the transformation

parameters for each control point at different time steps, we
employ an MLP Ψ to learn a time-varying transformation
field and query the transformation of each control point pk
at each timestep t as:

Ψ : (pi, t) → (Rt
i, T

t
i ). (4)

Note that in practical implementations, Rt
i is represented

equivalently as a quaternion rti for more stable optimization
and convenient interpolation for generating the motions of
Gaussians in the follow-up steps.

4.2. Dynamic Scene Rendering

Equipped with the time-varying transformation parame-
ters (Rt

i, T
t
i ) for sparse control points which form a set
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Figure 2. We present a novel method of employing sparse control points and a deformation MLP to direct 3D Gaussian dynamics. The
MLP uses canonical control point coordinates and time to obtain per-control-point 6-DOF transformations, which guide 3D Gaussian
deformation based on K nearest control points. Transformed Gaussians can then be rendered into images, and rendering loss calculated,
before backpropagating gradients to optimize the Gaussians, control points, and MLP. Gaussian and control point density are adaptively
managed during training.

of compact motion bases, the next step is to determine
the transformation of each Gaussian at different time steps
to derive the motion of the entire scene. We derive the
dense motion field of Gaussians using linear blend skin-
ning (LBS) [37] by locally interpolating the transformations
of their neighboring control points. Specifically, for each
Gaussian Gj : (µj , qj , sj , σj , shj), we use k-nearest neigh-
bor (KNN) search to obtain its K(= 4) neighboring control
points denoted as {pk|k ∈ Nj} in canonical space. Then,
the interpolation weights for control point pk can be com-
puted with Gaussian-kernel RBF [5, 10, 25] as:

wjk =
ŵjk∑

k∈Nj

ŵjk
, where ŵjk = exp(−

d2jk
2o2k

), (5)

where djk is the distance between center of Gaussian Gj

and the neighboring control point pk, and ok is the learned
radius parameter of pk. During training, these interpolation
weights are adaptable to model complex motions by encour-
aging the learnable radius parameters to be optimized in a
way that can accurately reconstruct the video frames.

Using the interpolation weights of neighboring control
points, we can calculate a Gaussian motion field through
interpolation. Following dynamic fusion works [5, 13, 25],
we employ LBS [37] to compute the warped Gaussian µt

j

and qtj as Eq. (6) and Eq. (7) for simplicity and efficiency:

µt
j =

∑
k∈Nj

wjk

(
Rt

k(µj − pk) + pk + T t
k

)
, (6)

qtj = (
∑
k∈Nj

wjkr
t
k)⊗ qj , (7)

where Rt
k ∈ R3×3 and rtk ∈ R4 are the matrix and quater-

nion representations of predicted rotation on control point k
respectively. ⊗ is the production of quaternions, obtaining
the quaternion of the composition of corresponding rotation
transforms. Then, with the updated Gaussian parameters,
we are able to perform rendering at time step t following
Eq. (2) and Eq. (3).

4.3. Optimization

Our dynamic scene representation consists of control points
P and Gaussians G in the canonical space and the defor-
mation MLP Ψ. To stabilize the training process, we first
pre-train P and Ψ to model the coarse scene motion with
the Gaussians G fixed. The details are included in the sup-
plementary material. Then, the whole model is optimized
jointly. To facilitate learning, we introduce an ARAP loss to
encourage the learned motion of control points to be locally
rigid and employ an adaptive density adjustment strategy to
adapt to varying motion complexities in different areas.

ARAP Loss and Overall Optimization Objective. To
avoid local minima and regularize the unstructured control
points, we introduce an ARAP loss Larap that encourages
their motions to be locally rigid, following the principle of
being as rigid as possible [34]. Before computing the ARAP
loss for control points, it is necessary to identify the edges
that connect them. To avoid linking unrelated points, we opt
to connect the points that have closely aligned trajectories
in the scene motion. Specifically, for a control point pj , we
firstly calculate its trajectory ptraj

i that includes its locations
across Nt(= 8) randomly sampled time steps as:

ptraj
i =

1

Nt
pt1i ⊕ pt2i ⊕ · · · ⊕ p

tNt
i , (8)

where ⊕ denotes vector concatenation operation. Based on
the trajectories obtained, we perform ball queries and use
all control points Nci within a pre-defined radius to define
a local area. Then, to calculate Larap, we randomly sample
two time steps t1 and t2. For each point pk within the ra-
dius (i.e. k ∈ Nci ), its transformed locations with learned
translation parameters T t1

k and T t2
k are: pt1k = pk +T t1

k and
pt2k = pk+T t2

k , thus the rotation matrix R̂i can be estimated
following a rigid motion assumption [34] as:

R̂i = argmin
R∈SO(3)

∑
k∈Nci

wik||(pt1i − pt1k )−R(pt2i − pt2k )||2. (9)

Here wik is calculated similarly to wjk in Eq. (5) by re-
placing Gaussian position µj with control point position
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pi, which weights the contribution of different neighboring
points pk according to their impact on pi. Eq. (9) can be
easily solved using SVD decomposition according to [34].
Then, Larap is designed as,

Larap(pi, t1, t2) =
∑

k∈Nci

wik||(pt1i − pt1k )− R̂i(p
t2
i − pt2k )||2, (10)

which evaluates the degree to which the learned motion de-
viates from the assumption of local rigidity. By penaliz-
ing Larap, the learned motions are encouraged to be locally
rigid. The rigid regularization significantly enhances the
learned motion with visualizations shown in Fig. 6.

For optimization, besides Larap, the rendering loss Lrender
is derived by comparing the rendered image at different time
steps with ground truth reference images using a combina-
tion of L1 loss and D-SSIM loss following [12]. Finally, the
overall loss is constructed as: L = Lrender + Larap.

Adaptive Control Points. Following [12], we also develop
an adaptive density adjustment strategy to add and prune
control points, which adjusts their distributions for mod-
eling varying motion complexities, e.g. areas that exhibit
complex motion patterns typically require control points of
high densities. 1) To determine whether a control point pi
should be pruned, we calculate its overall impact Wi =∑

j∈Ñi
wji on the set of Gaussians j ∈ Ñi whose K nearest

neighbors include pi. Then, we prune pi if Wi is close to
zero, indicating little contribution to the motion of 3D Gaus-
sians. 2) To determine whether a control point pk should be
cloned, we calculate the summation of Gaussian gradient
norm with respect to Gaussians in set Ñk as:

gi =
∑
j∈Ñi

w̃j ||
dL
dµj

||22, where w̃j =
wji∑

j∈Ñk

wji
. (11)

A large gk indicates poor reconstructions. Therefore, we
clone pk and add a new control point p′k to the expected
position of related Gaussians to improve the reconstruction:

p′k =
∑
j∈Ñk

w̃iµj ; σ
′
k = σk. (12)

5. Motion Editing
Since our approach utilizes an explicit and sparse motion
representation, it further allows for efficient and intuitive
motion editing through the manipulation of control points.
It is achieved by predicting the trajectory of each control
point across different time steps, determining their neigh-
borhoods, constructing a rigid control graph, and perform-
ing motion editing by graph deformation.

Control Point Graph. With the trained control points P
and the MLP Ψ, we construct a control point graph G that
connects control points based on their trajectories. For each

vertex of the graph, i.e., control point pi, we firstly calcu-
late its trajectory ptraj

i derived from Eq. (8). Then, the ver-
tex is connected with other vertices that fall within a ball
of a pre-determined radius parameter based on ptraj

i . The
edge weights wij between two connected vertices pi and
pj are calculated using Eq. (5). Building the control graph
based on point trajectory helps take into account the overall
motion sequence instead of a single timestep, which avoids
unreasonable edge connections. We demonstrate the advan-
tage of this choice in the supplementary material.

Motion Editing. In order to maintain the local rigidity, we
perform ARAP [34] deformation on the control graph based
on constraints specified by users. Mathematically, given
a set of user-defined handle points {hl ∈ R3 |l ∈ H ⊂
{1, 2, · · · , Np}}, the control graph P ′ can be deformed by
minimizing the APAR energy formulated as:

E(P ′) =

Np∑
i=1

∑
j∈Ni

wij ||(p′i − p′j)− R̂i(pi − pj)||2, (13)

with the fixed position condition p′l = hl for l ∈ H. Here
R̂i is the rigid local rotation defined on each control point.
This optimization problem can be efficiently solved by al-
ternately optimizing local rotations R̂i and deformed con-
trol point positions p′. We refer the readers to [34] for
the specific optimization process. The solved rotation R̂i

and translation T̂i = p′i − pi form a 6 DoF transformation
for each control point, which is consistent with our motion
representation. Thus, Gaussians can be warped by the de-
formed control points by simply replacing the transforma-
tion in Eq. (6) and Eq. (7), which can be rendered into high-
quality edited images even for motion out of the training
sequence. We visualize the motion editing results in Fig. 5.

6. Experiment
6.1. Datasets and Evaluation Metrics

To validate the superiority of our method, we conducted ex-
tensive experiments on D-NeRF [30] datasets and NeRF-
DS [46] datasets. D-NeRF datasets contain eight dynamic
scenes with 360◦ viewpoint settings, and the NeRF-DS
datasets consist of seven captured videos with camera pose
estimated using colmap [32]. The two datasets involve a
variety of rigid and non-rigid deformation of various ob-
jects. The metrics we use to evaluate the performance
are Peak Signal-to-Noise Ratio (PSNR), Structural Similar-
ity(SSIM), Multiscale SSIM(MS-SSIM), and Learned Per-
ceptual Image Patch Similarity (LPIPS) [53].

6.2. Quantitative Comparisons

D-NeRF Datasets. We compare our method against exist-
ing state-of-the-art methods: D-NeRF [30], TiNeuVox [7],
Tensor4D [33], K-Planes [31], and FF-NVS [11] using the
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Table 1. Quantitative comparison on D-NeRF [30] datasets. We present the average PSNR/SSIM/LPIPS (VGG) values for novel view
synthesis on dynamic scenes from D-NeRF, with each cell colored to indicate the best , second best , and third best .

Methods Hook Jumpingjacks Trex BouncingBalls

PSNR(↑)SSIM(↑)LPIPS(↓)PSNR(↑)SSIM(↑)LPIPS(↓)PSNR(↑)SSIM(↑)LPIPS(↓)PSNR(↑)SSIM(↑)LPIPS(↓)

D-NeRF [30] 29.25 .968 .1120 32.80 .981 .0381 31.75 .974 .0367 38.93 .987 .1074
TiNeuVox-B [7] 31.45 .971 .0569 34.23 .986 .0383 32.70 .987 .0340 40.73 .991 .0472
Tensor4D [33] 29.03 .955 .0499 24.01 .919 .0768 23.51 .934 .0640 25.36 .961 .0411
K-Planes [31] 28.59 .953 .0581 32.27 .971 .0389 31.41 .980 .0234 40.61 .991 .0297
FF-NVS [11] 32.29 .980 .0400 33.55 .980 .0300 30.71 .960 .0400 40.02 .990 .0400
4D-GS [42] 30.99 .990 .0248 33.59 .990 .0242 32.16 .988 .0216 38.59 .993 .0267
Baseline 34.47 .990 .0195 35.74 .992 .0178 36.37 .994 .0103 41.45 .996 .0190
Ours 39.87 .997 .0076 41.13 .998 .0067 41.24 .998 .0046 44.91 .998 .0166

Methods Hellwarrior Mutant Standup Average

PSNR(↑)SSIM(↑)LPIPS(↓)PSNR(↑)SSIM(↑)LPIPS(↓)PSNR(↑)SSIM(↑)LPIPS(↓)PSNR(↑)SSIM(↑)LPIPS(↓)

D-NeRF [30] 25.02 .955 .0633 31.29 .978 .0212 32.79 .983 .0241 31.69 .975 .0575
TiNeuVox-B [7] 28.17 .978 .0706 33.61 .982 .0388 35.43 .991 .0230 33.76 .983 .0441
Tensor4D [33] 31.40 .925 .0675 29.99 .951 .0422 30.86 .964 .0214 27.62 .947 .0471
K-Planes [31] 25.27 .948 .0775 33.79 .982 .0207 34.31 .984 .0194 32.32 .973 .0382
FF-NVS [11] 27.71 .970 .0500 34.97 .980 .0300 36.91 .990 .0200 33.73 .979 .0357
4D-GS [42] 31.39 .974 .0436 35.98 .996 .0120 35.37 .994 .0136 34.01 .987 .0316
Baseline 39.07 .982 .0350 41.45 .998 .0045 41.04 .996 .0071 38.51 .992 .0162
Ours 42.93 .994 .0155 45.19 .999 .0028 47.89 .999 .0023 43.31 .997 .0063

Table 2. Quantitative comparison on NeRF-DS [46] datasets. We display the average PSNR/MS-SSIM/LPIPS (Alex) metrics for novel
view synthesis on dynamic scenes from NeRF-DS, with each cell colored to indicate the best , second best , and third best .

Methods Bell Sheet Press Basin

PSNR(↑)MS-SSIM(↑)LPIPS(↓)PSNR(↑)MS-SSIM(↑)LPIPS(↓)PSNR(↑)MS-SSIM(↑)LPIPS(↓)PSNR(↑)MS-SSIM(↑)LPIPS(↓)

HyperNeRF [27] 24.0 .884 .159 24.3 .874 .148 25.4 .873 .164 20.2 .829 .168
NeRF-DS [46] 23.3 .872 .134 25.7 .918 .115 26.4 .911 .123 20.3 .868 .127
TiNeuVox-B [7] 23.1 .876 .113 21.1 .745 .234 24.1 .892 .133 20.7 .896 .105
Baseline 24.9 .917 .124 26.1 .903 .127 25.1 .884 .221 19.6 .852 .144
Ours 25.1 .918 .117 26.2 .898 .142 26.6 .901 .135 19.6 .846 .154

Methods Cup Sieve Plate Average

PSNR(↑)MS-SSIM(↑)LPIPS(↓)PSNR(↑)MS-SSIM(↑)LPIPS(↓)PSNR(↑)MS-SSIM(↑)LPIPS(↓)PSNR(↑)MS-SSIM(↑)LPIPS(↓)

HyperNeRF [27] 20.5 .705 .318 25.0 .909 .129 18.1 .714 .359 22.5 .827 .206
NeRF-DS [46] 24.5 .916 .118 26.1 .935 .108 20.8 .867 .164 23.9 .898 .127
TiNeuVox-B [7] 20.5 .806 .182 20.1 .822 .205 20.6 .863 .161 21.5 .843 .162
Baseline 24.7 .919 .116 25.3 .917 .109 20.3 .842 .214 23.7 .891 .151
Ours 24.5 .916 .115 26.0 .919 .114 20.2 .837 .202 24.1 .891 .140

official implementations and follow the same data setting.
Concurrent work 4D-GS [42] is also compared since the of-
ficial code has been released. We also evaluate the baseline
that directly applies estimated per-Gaussian transformation
with a deformation MLP to demonstrate the effectiveness of
control points. The comparisons are carried out on the res-
olution of 400x400, following the same approach as in pre-
vious methods [4, 7, 30]. We demonstrate the comparison
results in Tab. 1. Our approach significantly outperforms
others. The baseline method also achieves high synthesis
quality thanks to the superiority of 3D Gaussians. How-

ever, without the regularization of compact motion bases,
the baseline has difficulty in achieving global optima. We
also report the rendering speed comparison in the supple-
mentary material to show the efficiency of our method.
NeRF-DS Datasets. Although the datasets provide rel-
atively accurate camera poses compared with [27], some
inevitable estimation errors still exist. This resulted in a
downgraded performance of our method. However, our ap-
proach still achieves the best visual quality compared with
SOTA methods, as reported in Tab. 2. It’s worth mentioning
that NeRF-DS outperforms both our method and the base-
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D-NeRF GTTiNeuVox-B K-Planes 4D-GS Ours

Figure 3. Qualitative comparison of dynamic view synthesis on D-NeRF [30] datasets. We compare our method with state-of-the-art
methods including D-NeRF [30], TiNeuVox-B [7], K-Planes [31], and 4D-GS [48]. Our method delivers a higher visual quality and
preserves more details of dynamic scenes. Notably, in the Lego scene (bottom row), the train motion is inconsistent with the test motion.

Figure 4. Qualitative comparisons of dynamic view synthesis on
scenes from NeRF-DS [46]. Our method produces high-fidelity
results even without specialized design for specular surfaces.

line on certain datasets, as it employs a specialized design
for modeling the specular parts of dynamic objects. Despite

this, our approach, which doesn’t employ any additional
processes, still achieves a higher average performance.

6.3. Qualitative Comparison

We also conduct qualitative comparisons to illustrate the ad-
vantages of our method over SOTA methods. The compar-
isons on D-NeRF datasets are shown in Fig. 3, where zoom-
in images show the details of synthesized images. Our ap-
proach produces results closest to the ground truths and has
the best visual quality. Note that, in the Lego scene, the
motion in the test set does not align with that in the train-
ing set, as indicated in the bottom row of the figure. The
same observation can also be seen in [47]. The qualitative
comparisons conducted on the NeRF-DS dataset are also
demonstrated in Fig. 4. It is clear that our method is capable
of producing high-fidelity novel views, even in the absence
of a specialized design for specular surfaces.
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Figure 5. We visualize the reconstructed motion sequence from the dynamic scene (top) and edited motion sequence (bottom). Our
approach generalizes well for motion out of the training set benefitting from the locally rigid motion space modeled by control points.

Table 3. We quantitatively evaluate the effect of control points and
ARAP loss on D-NeRF [30] datasets.

Methods PSNR(↑) SSIM(↑) LPIPS(↓)

w/o Control Points 38.512 0.9922 0.0162
w/o ARAP loss 42.617 0.9963 0.0067
Full 43.307 0.9976 0.0063

6.4. Ablation study

Control Points. Our motion representation driven by con-
trol points constructs a compact and sparse motion space,
effectively mitigating overfitting on the training set. We
quantitatively compare the novel view synthesis quality of
our method with the baseline that does not utilize control
points on both D-NeRF [30] and NeRF-DS [46] datasets,
as presented in Tab. 1 and Tab. 2. To intuitively elucidate
the effects of control points, we compare the results and vi-
sualize the trajectories of Gaussians driven either with or
without control points in Fig. 6 (a) and (b). Clearly, directly
predicting the motion of each Gaussian with an MLP leads
to noise in Gaussian trajectories. While the baseline theo-
retically is more flexible in representing diverse motions, it
tends to falter and descend into local minima during opti-
mization, hindering it from achieving the global optimum.

ARAP Loss. Despite the control-point-driven motion rep-
resentation providing effective regularization to Gaussian
motions, there can be occasional breaches in rigidity. As
evidenced in Fig. 6 (c), even though Gaussians achieve rela-
tively smooth trajectories, some Gaussians on the arm move
towards the girl’s torso instead of moving alongside the as-
cending arm. This issue arises due to the lack of constraints
on the inter-relation of control points’ motions. By im-
posing ARAP loss on control points, such phenomena are
eliminated, thus facilitating a robust motion reconstruction.
Tab. 3 illustrates without ARAP loss, the performance of
dynamic view synthesis on D-NeRF [30] slightly decreases.

(a) w/o Control Points (b) Full (c) w/o ARAP Loss

Figure 6. We visualize the rendering results and Gaussian trajecto-
ries of (a) the baseline method without control points, (b) our full
method, and (c) our method without ARAP loss.

6.5. Motion Editing

Our method facilitates scene motion editing via the manip-
ulation of control nodes, due to the explicit motion repre-
sentation using control points. The learned correlation and
weights between Gaussians and control points enable ex-
cellent generalization, even on motion beyond the training
sequence. The reconstructed and edited motion sequences
are demonstrated in Fig. 5.

7. Conclusion and Limitations

We present a method driving 3D Gaussians using control
points and a deformation MLP, learnable from dynamic
scenes. Our approach, combining a compact motion
representation with adaptive learning strategies and rigid
constraints, allows high-quality dynamic scene reconstruc-
tion and motion editing. Experiments showed our method
outperforms existing approaches in the visual quality of
synthesized dynamic novel views. However, limitations
exist. The performance is prone to inaccurate camera
poses, leading to reconstruction failures on datasets with
inaccurate poses such as HyperNeRF [27]. The approach
can also overfit datasets with sparse viewpoints or limited
angle coverage. Finally, the method has been tested only in
scenes with modest motion changes. Extending its applica-
bility to intense movements remains an area of exploration.
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